The Lying over and Going up Theoverns

If $R \subseteq S$ and S is integral over R, how does Spec S compare to S pec R ?

Theorem: Suppose $R \subseteq S$ and S integral over R. If $P \in S p e r R$, there is some $Q \in$ Spec S with $R \cap Q=P$. Moreover, Q can be chosen to contain any ideal $Q_{0} \subseteq S$ that satisfies $R \cap Q_{0} \subseteq P$.

Pf: Let $Q_{0} \subseteq S$ s.t. $R \cap Q_{0} \subseteq P$. We can replace S and R with S / Q_{0} and $R / R \cap Q_{0}$ and assume $Q_{0}=0$. We thus only need to prove the first statement in the theorem.

Let $U=R-P$. Since there is a $1-$ to- 1 correspondence between primes in $U^{-1} S$ and primes in S not meeting U, we can replace S by $U^{-1} S$ and R by $U^{-1} R=R_{p}$, and assume R is local $w / \max ^{\prime l}$ ideal P.

Any maximal ideal of S containing $P S$ has preimage in R containing P and thus equal to P. Thus, we just heed to show PS is contained in a max'l ideal, i.e. $P S \neq S$.

If $P S=S$, then

$$
l=s_{1} p_{1}+\cdots+s_{n} p_{n}
$$

where $s_{i} \in S, p_{i} \in P$. Set $S^{\prime}=R\left[s_{1}, \ldots, s_{n}\right] \subseteq S$. Then $1 \in P S^{\prime}$ so $P S^{\prime}=S^{\prime}$. Since S^{\prime} is integral and finitely generated $/ R$, it's finite $/ R$.

By Nakayama, $S^{\prime}=0$, a contradiction.

This immediately implies the classical "Lying over" Theorem:

Cor (Lying over): If $R \hookrightarrow S$ is an integral extension, then Spec $S \rightarrow$ Spec R is surjective.

Note that the integrality hypothesis is necessary:

Ex: Define $\varphi: k[t] \hookrightarrow k[x, y] /(x y-1)=S$

$$
t \longmapsto x
$$

The nonzero primes in S are of the form $(x-a, y-1 / a), a \neq 0$.
In particular, the preimages are of the form $(t-a)$, so (t) is not in the image of the Spec map.

Ex: Let R be a ring and $U \subseteq R$ multiplicatively closed. Suppose U contains some non unit r, and consider $R \rightarrow U^{-1} R$.

Let $P \subseteq R$ be a prime ichal containing r. For $Q \in \operatorname{spec} U^{-1} R, \quad \frac{r}{1} \notin Q$, so $Q \cap R \neq P$. Thus spec $U^{-1} R \rightarrow$ spec R
is not surjective, so $R \rightarrow U^{-1} R$ is only integral if U consists of units (ie. if it's an isomorphism)

The Theorem also implies the "Going up" theorem:

Cor (Goingup): If $R \hookrightarrow S$ is integral and $P_{0} \subseteq P_{1} \subseteq \ldots \subseteq P_{d}$ a chain of primes in R, there exists a chain of prime $Q_{0} \subseteq Q_{1} \subseteq \ldots \subseteq Q_{d}$ in S such that each Q_{i} contracts to P_{i}. ie. $Q_{i} \cap R=P_{i}$.

Pf: First find Q_{0} by the Theorem. Then we can find each Q_{i+1} inductively by the theorem since $Q_{i} \cap R \subseteq P_{i+1}$.

We will prove the "going down" theorem (which requires more hypotheses) later.

If R and S are integral domains, we can consider the field extension of their fields of fractions, $K(R)$ and $K(s)$:

Lemma: Let $R \subseteq S$ be integral domains and suppose $K(R) \subseteq K(S)$ is an algebraic extension. Then for any nonzero ideal $I \subseteq S, \quad I \cap R \neq O$.

Pf: It suffices to assume $I=(b) \subseteq S$. Then

$$
a_{n} b^{n}+\ldots+a_{1} b+a_{0}=0 \quad w / a_{i} \in K(R), a_{0} \neq 0
$$

We can multiply through by a common denominator and assume all $a_{i} \in R$. Thus,

Note that this means that if R is a field, any nonzero ideal of S contains all of R, so it contains 1, so S must be a field as well. This gives us the following:

Cor: If $R \subseteq S$ is an integral extension of integral domains, then S is a field $\Leftrightarrow R$ is a field.

Pf: If R is a field, then S is contained in the
algebraic closure of R in $K(s)$, so all of $K(s)$ is. Thus, we can apply the lemma, so S is a field.

If S is a field, let $m \subset R$ a max'l ideal. Then there's a prime $Q \subseteq S$ sit. $Q \cap R=m$. But $Q=0$, so $m=0$. Thus R is a field.

Note that if $P \subseteq S$ is a prime ideal

$$
R / P \cap R \subseteq S / P
$$

is also an integral extension, so the corollary implies:

Cor: If $R \subseteq S$ an integral extension of integral domains, and $P \in S$ pec S, then $P \subseteq S$ is maximal $\Leftrightarrow P \cap R \subseteq R$ is maximal.

We can also use the lemma to deduce that two points in the fiber of the map on Spec mast be incomparable. That is:

Cor: If $R \subseteq S$ is an integral extension, then if

$$
Q \subseteq Q, \subseteq S
$$

are prime ideals sit. $Q \cap R=Q_{1} \cap R$, then $Q=Q_{1}$.

Pf: Let $P=Q \cap R$. Then $R / P \subseteq S / Q$ is integral.
Thus S / Q is integral over $K(R / P)$, so $K(S / Q)$ is as well (since $K(R / P)$ is a field).
$Q_{1} / Q \cap R / P=0$, so the lemma says $Q_{1} / Q=0$, so $Q_{1}=Q$.

This allows us to compare the dimensions of $\operatorname{Spec} R$ and specs:

Def: The (Krill) dimension of R is the supremum of lengths of chains of prime ideals of R. i.e.

$$
\operatorname{dim} R:=\sup \left\{d \mid \exists P_{i} \in \operatorname{spec} R \text { s.t. } P_{0} \subsetneq P_{1} \subsetneq \ldots \subsetneq P_{d}\right\}
$$

Ex: 1.) If k is a field, $\operatorname{dim} k=0$.
2.) In $k[x]$, every nonzero ideal is $\max 1$, so $\operatorname{dim} k[x]=1$.
3.) In $k\left[x_{1}, \ldots, x_{n}\right], \quad 0 \subsetneq\left(x_{1}\right) \subsetneq\left(x_{1}, x_{2}\right) \subsetneq \ldots \subsetneq\left(x_{1}, \ldots, x_{n}\right)$, so $\operatorname{dim} k\left[x_{1}, \ldots, x_{n}\right] \geq n$. We will see later that this is an equality (which is surprisingly hard to show).

Cor: If $R G S$ is integral, then $\operatorname{dim} R=\operatorname{dim} S$.

Pf: If $P_{0} \subset P_{1} \nsubseteq \nsubseteq P_{n}$ is a chain of primes in R, then Going up says we can find a chain $Q_{0} \subset_{T} \ldots \bigodot_{T} Q_{n}$ in S, so $\quad \operatorname{dim} S \geq \operatorname{dim} R$.

If $Q_{0} \subsetneq \ldots \subsetneq Q_{n}$ is a chain of primes in S, then The previous corollary says $Q_{i} \cap R \subsetneq Q_{i+1} \cap R$ for each i, so $\operatorname{dim} R \geq \operatorname{dim} S$.

We will come back to dimension soon after first discussing some important invariants of modules.

