The Lying over and Going up Theorems

IF RES and S is integral over R, how does SpecS compare to SpecR?

Theorem: Suppose RES and S integral over R. If PESpec R, there is some QESpec S with RAQ=P. Moreover, Q can be chosen to contain any ideal $Q_0 \subseteq S$ that satisfies RAQ₀ $\subseteq P$.

Pf: Let
$$Q_0 \subseteq S$$
 s.t. $R \cap Q_0 \subseteq P$. We can replace
S and R with S'_Q_0 and $R'_{R \cap Q_0}$ and assume
 $Q_0 \equiv O$. We thus only need to prove the first
statement in the theorem.

let U=R-P. Since there is a 1-to-1 correspondence between primes in U'S and primes in S not meeting U, we can replace S by U'S and R by U'R=Rp, and assume R is local w/ max'l ideal P.

Any maximal ideal of S containing PS has preimage in R containing P and thus equal to P. Thus, we just need to show PS is contained in a max'l ideal, i.e. $PS \neq S$. If PS=S, Thin

$$l = S_1 P_1 + \cdots + S_n P_n$$

where $s_i \in S$, $p_i \in P$. Set $S' = R[s_1, ..., s_n] \in S$. Then $l \in PS'$ so PS' = S'. Since S' is integral and finitely generated /R, it's finite /R.

By Nakayama, $S' = O_j$ a contradiction. \Box

This immediately implies the classical "Lying over" Theorem: <u>Cor (Lying over</u>): If R ~ S is an integral extension, then Spec S ~ Spec R is surjective.

Note that the integrality hypothesis is necessary:

Ex: Define
$$Y: k[t] \hookrightarrow k[x,y]/(xy-1) = S$$

 $t \longmapsto \chi$
The nonzero primes in S are
of the form $(x-a, y - \frac{1}{a})$, $a \neq 0$.
In particular, the preimages
are of the form $(t-a)$, so
 (t) is not in the image of
the Spec map.

Ex: let R be a ring and $U \subseteq R$ multiplicatively closed. Suppose U contains some nonunit r, and consider $R \rightarrow U'R$.

is not surjective, so R→U'R is only integral if U consists of units (i.e. if it's an isomorphism)

The Theorem also implies the "Going up" theorem:

<u>Cor (Going up)</u>: If $R \hookrightarrow S$ is integral and $P_0 \subseteq P_1 \subseteq \dots \subseteq P_d$ a chain of primes in R, there exists a chain of prime $Q_0 \subseteq Q_1 \subseteq \dots \subseteq Q_d$ in S such that each Q_i contracts to P_i . i.e. $Q_i \cap R = P_i$.

Pf: First find Qo by the Theorem. Then we can find each Q_{i+1} inductively by the theorem since $Q_i \cap R \subseteq P_{i+1}$. □

We will prove The "going down" theorem (which requires more hypotheses) later. If R and S are integral domains, we can consider the field extension of their fields of fractions, K(R)and K(S):

Lemma: Let
$$R \subseteq S$$
 be integral domains and suppose
 $K(R) \subseteq K(S)$ is an algebraic extension. Thus for
any nonzero ideal $I \subseteq S$, $I \cap R \neq O$.

Pf: It suffices to assume
$$I = (b) \subseteq S$$
. Thun
 $a_n b^m + \dots + a_i b + a_o = 0$ w/ $a_i \in K(R)$, $a_o \neq 0$.

We can multiply through by a common denominator and assume all a; ER. Thus,

Note that this means that if R is a field, any nonzero ideal of S contains <u>all</u> of R, so it contains 1, so S must be a field as well. This gives us the following:

Cor: If $R \subseteq S$ is an integral extension of integral domains, then S is a field (=) R is a field.

Pf: If R is a field, turn S is contained in the

algebraic closure of R in K(s), so all of K(s) is. Thus, we can apply the lemma, so S is a field.

If S is a field, let $m \in R$ a max'l ideal. Then there's a prime $Q \subseteq S$ s.t. $Q \cap R = m$. But Q = O, so m = O. Thus R is a field. \Box

Note that if PCS is a prime ideal
$$\frac{R}{PRR} \subseteq \frac{S}{P}$$

is also an integral extension, so The corollary implies:

Cor: If RES an integral extension of integral domains, and PESpecS, then PES is maximal (=> PARER is maximal.

We can also use the lemma to deduce that two points in the fiber of the map on Spec must be incomparable. That is:

Cor: If
$$R \subseteq S$$
 is an integral extension, thus if $Q \subseteq Q_1 \subseteq S$

are prime ideals s.t. $QAR = Q_1AR$, then $Q = Q_1$.

Pf: let P=QAR. Then Pp=SQ is integral.

Thus S'_Q is integral over $K(P_p)$, so $K(S'_Q)$ is as well (since $K(P_p)$ is a field).

 $Q'_Q \cap R'_P = 0$, so the lemma says $Q'_Q = 0$, so $Q_1 = Q_2 \square$

This allows us to compare the dimensions of Speck and Specs:

Def: The (Knull) dimension of R is the supremum of lengths of chains of prime ideals of R. i.e. $\dim R := \sup \{d \mid \exists P_i \in Spec R s.t. P_o \notin P_i \notin \dots \notin P_d \}$

 $\mathbf{E}\mathbf{x}$: 1.) If k is a field, dim k = 0.

2.) In k[x], every nonzero ideal is max'l, so dimk[x]=1.

3.) In $k[x_{1},...,x_{n}]$, $0 \notin (x_{1}) \notin (x_{1}, x_{2}) \notin \notin (x_{1},...,x_{n})$, so dim $k[x_{1},...,x_{n}] \ge n$. We will see later that this is an equality (which is surprisingly hard to show).

Pf: If $P_0 \notin P_1 \notin \dots \notin P_n$ is a chain of primes in R, Then Groing up says we can find a chain $Q_0 \notin \dots \notin Q_n$ in S, so dim S \ge dim R.

If $Q_0 \neq \dots \neq Q_n$ is a chain of primes in S, then the previous corollary says $Q_i \cap R \neq Q_{i+1} \cap R$ for each i, so dim $R \ge dim S$. \Box

We will come back to dimension soon after first discussing some important invariants of modules.